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1 Introduction

Object detection is a critical component of computer vision, utilized across diverse sectors from
autonomous navigation to interactive robotic systems. Traditional methods, however, suffer from
inefficiencies as they scan entire images to locate objects, often processing vast irrelevant regions[19].
This not only consumes excessive computational resources but also hampers real-time applications
where fast, efficient decision-making is paramount. For example, in a retail environment, conventional
object detection might continuously analyze an entire store layout to track inventory or monitor
customer movements. This method wastes computational power on empty shelves or areas without
significant customer activity, leading to slower response times and increased operational costs.

To overcome these limitations, our project proposes an approach by integrating human pointing
gestures into the detection system. This method focuses the system’s attention on specific areas
indicated by a human operator, significantly improving both the speed and accuracy of object
detection. By honing in on relevant parts of the image, our approach interprets the semantic context
of scenes, which is crucial for decision-making on resource-limited edge devices like drones. This
targeted detection method promises to revolutionize applications by reducing unnecessary processing
and prioritizing critical data, ultimately leading to more efficient and context-aware computing in
real-time environments.

2 Related Work

Object detection technology has seen remarkable progress from the initial Viola-Jones Detector[1],
a pioneer in real-time face detection, to advanced systems like AlexNet[2], which transformed
image classification with deep convolutional layers. The shift from basic to intricate methods
continued with the introduction of R-CNN, which significantly improved object localization by
integrating region proposals with convolutional neural networks (CNNs). This evolution saw a
groundbreaking shift with YOLOv1[3], which increased processing speeds by treating detection as a
single regression problem across the entire image, a departure from traditional patch-based methods.
Further advancements brought about techniques like CornerNet[4], which uses paired corner points
for object detection, eliminating the need for predefined anchor boxes and simplifying the detection
framework. In the field of dynamic interaction, early endeavors utilized multiple cameras to detect
pointing actions in real-time[9]. For instance, research focused on glove-free interfaces[5], which laid
the foundation for subsequent studies exploring uncalibrated stereo vision[7]. These advancements
paved the way for further exploration into real-time detection and estimation of omnidirectional
pointing gestures, providing valuable insights into the challenges and opportunities in this field.
The PKU-MMD model became a significant development for gesture recognition. Deepoint[12]
focuses on extracting pointing gestures and training on RGBD datasets, enhancing the dynamics of
human-machine interaction.

Building on these technologies, our project advances the Faster R-CNN framework with "Deepoint,"
a system designed to concentrate detection on areas specifically indicated by human gestures. This
integration not only simplifies the detection process but also significantly enhances efficiency in
scenarios involving human-robot interaction, where quick and precise detection is essential. This
targeted approach optimizes resource usage and improves interaction quality, marking a step forward
in object detection technology for efficient, context-aware processing in various applications.



3 Baseline results

Our project’s baseline relies on DeePoint, a deep neural network designed for pointing gesture
recognition. Implementing DeePoint involved capturing 1200 video frames on iPhone 14 Pro
videos with a depth sensor and test them on the DeePoint model, for statistical accuracy, we
also used the roughly 1,60,000 frames from DP dataset, combining all the data. Challenges
arose with OpenGL on Mac, resolved by switching to SoL computing. GPU consumption fluc-
tuations (80% peak to 10%) were observed from frame to frame, aided by 12 CPU cores at
70% utilization. Successful video generation demonstrated DeePoint’s potential, with results
available for analysis on our Google Drive: https://drive.google.com/drive/folders/
1FfVAFbd2YZucIGEEUn6W89iuFjXGNKx_?usp=sharing. DeePoint’s baseline performance high-
lights challenges and optimizations for streamlining implementation.

Table 1: Pointing direction estimation errors

Set split Value

Temporal split 22.83◦
Scene split 28.47◦
Person split 22.50◦

Table 2: Recall and precision for the pointing ac-
tion detection

Set split Accuracy Precision

Temporal split 0.612 0.837
Scene split 0.642 0.683
Person split 0.479 0.816

For evaluation, our dataset with around 161,200 frames from 4 people in three environments: Indoor
environment without noise[Fig 1.1], Indoor environment with noise[Fig 1.3] and Outdoor environ-
ment[Fig 1.2]. We split the data into three parts: Temporal Split (to check how well the model
performs for each person across different sessions), Scene Split (to see if the model can adapt to
different environments) and Person Split (to understand if the model works differently for different
people). We have trained the models using these splits and measured their performance [Table 2] in
terms of pointing direction accuracy and pointing detection recall/precision and errors [Table 1] are
calculated as the average angular difference between the predicted pointing direction and the ground
truth direction across all instances or frames in the dataset. We used a learning rate of 10−4 with the
Adam optimizer and a batch size of 64.

4 Our Contribution

Building upon our baseline "Deepoint" system, we have significantly augmented its capabilities by
integrating it with a sophisticated object detection framework, creating a hybrid system that combines
the strengths of both domains. This integration results in a more comprehensive and contextually
aware object detection system.

Outputs from the Deepoint pointing gesture recognition network are directly fed into our object
detection pipeline. This dual-network approach enables a contextual understanding of scenes. Rather
than processing the entire image independently, our system utilizes the directional vectors from
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Deepoint to guide the Faster R-CNN object detection network. This approach focuses the network’s
attention on areas most likely to contain relevant objects, drastically reducing the computational
overhead of traditional exhaustive image searches and enhancing both processing speed and efficiency.

Figure 1: Overview of the Enhanced Object Detection Pipeline Integrating Human Pointing Gestures.

By customizing the Fast R-CNN model, which incorporates a robust ResNet50 backbone, our system
dynamically prioritizes regions of interest based on real-time user input. This dynamic prioritization
leads to more accurate detections as the system concentrates on areas identified by user pointing,
improving the relevance and accuracy of the detection results. We have streamlined the integration
between the object detection and visualization modules to ensure seamless and real-time processing.
This optimization is essential for applications requiring immediate response, such as autonomous
driving and surveillance. We’ve also enhanced error handling and data consistency between modules
to improve the system’s reliability and robustness.

Our enhanced model now delivers enriched visual feedback. It draws bounding boxes around detected
objects and annotates these with the object’s class name and confidence levels. The visualization
includes additional elements like arrows or highlights that emphasize specific features or aspects of
the detected objects, significantly enhancing the utility for end-users.

5 Results

In our comprehensive results analysis of the enhanced object detection system, we observed significant
improvements in detection accuracy and efficiency, facilitated by the integration of the "Deepoint"
pointing gestures with the Faster R-CNN model. The analysis of 2086 frames derived from 24 videos
processed at 15 frames per second revealed insightful details about the system’s performance in
real-world scenarios.

1. True Positive Rate: The system achieved a high rate of true positives, with 1022 frames
correctly identifying both the arrow direction and the detected object. This indicates a strong
alignment between the pointing gesture input and the object detection output, reflecting high
system reliability in scenarios where user interaction directly influences detection focus.

2. False Positive and False Negative Rates: There were 246 instances where the system
erroneously detected objects that were not pointed at (false positives) and 212 cases where it
failed to detect the correct object despite accurate pointing (false negatives). These metrics
are crucial for understanding the limitations in the current model, particularly in terms of its
sensitivity and specificity.

Overall Accuracy: The confusion matrix and subsequent calculations revealed that the system
maintained a robust mean Average Precision (mAP) of 76%. This metric is particularly telling as
mAP is a comprehensive measure that considers both precision and recall, providing a balanced view
of the model’s overall performance across various classes.

The standard deviation in the detection accuracies, particularly in the context of true positives and
false negatives, was relatively low. This low variability in performance across multiple frames and
scenarios suggests that the system behaves consistently under different conditions. The precise
values of standard deviation were calculated based on the aggregation of results across all tested
frames, providing a statistical basis for evaluating the model’s reliability. The low standard deviations
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Figure 2: Model performance upon Pointing gesture arrow and object detection (a) True Positive (b)
False Negative (c) False Positive (d) True Negative respectively

Figure 3: Confusion Matrix for the Enhanced Object Detection Model, illustrating the classification
accuracy and misclassifications across different object categories.

combined with a high mean Average Precision allow us to claim victory in achieving a robust and
reliable pointing gesture-enhanced object detection system. The consistent performance across a
diverse set of video inputs and object scenarios underscores the system’s effectiveness in real-world
applications. The mean Average Precision comparison for observed classes from the COCO 2017
dataset, as outlined in Table 3, provided a benchmark against industry standards. This comparison not
only highlighted the strengths of our system but also shed light on specific classes where the model
could be further optimized.

Class Name Faster R-CNN (Baseline mAP) Our Model (mAP)
apple 70.1 72.6

banana 80.6 83.4
hat 78.2 80.4

laptop 69.9 66.4
bottle 49.9 52.8

computer mouse 76.3 75.9
chair 79.8 75.3
book 52.2 69.6

Table 3: mean Average Precision comparison for observed classes from COCO 2017 dataset

6 Conclusion

This project has effectively demonstrated how the integration of human pointing gestures with
traditional object detection systems can significantly enhance the efficiency and accuracy of these
systems. Our innovative approach not only optimizes computational resources by focusing on user-
indicated areas but also enriches the system’s contextual awareness, thereby facilitating more relevant
and precise detections. This integration represents a significant advancement in the field of computer
vision, suggesting substantial potential for further developments in interactive systems where human
input can directly influence and improve machine perception and decision-making. The successful
outcomes from this project lay a strong foundation for future research into creating more adaptive,
intuitive, and user-focused detection systems.
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